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An Entropy-Based Statistic for Genomewide Association Studies
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Efficient genotyping methods and the availability of a large collection of single-nucleotide polymorphisms provide
valuable tools for genetic studies of human disease. The standard x2 statistic for case-control studies, which uses
a linear function of allele frequencies, has limited power when the number of marker loci is large. We introduce
a novel test statistic for genetic association studies that uses Shannon entropy and a nonlinear function of allele
frequencies to amplify the differences in allele and haplotype frequencies to maintain statistical power with large
numbers of marker loci. We investigate the relationship between the entropy-based test statistic and the standard
x2 statistic and show that, in most cases, the power of the entropy-based statistic is greater than that of the standard
x2 statistic. The distribution of the entropy-based statistic and the type I error rates are validated using simulation
studies. Finally, we apply the new entropy-based test statistic to two real data sets, one for the COMT gene and
schizophrenia and one for the MMP-2 gene and esophageal carcinoma, to evaluate the performance of the new
method for genetic association studies. The results show that the entropy-based statistic obtained smaller P values
than did the standard x2 statistic.

Introduction

Genomewide association studies are emerging as a
promising tool for genetic analysis of complex diseases
(Risch and Merikangas 1996; Stumpf and Goldstein
2003; Carlson et al. 2004; Neale and Sham 2004). Such
association studies depend on linkage disequilibrium
(LD). However, population histories and evolutionary
forces may generate aberrant LD patterns across marker
loci and important differences in allele frequencies and
LD patterns across populations (Morton and Collins
1998; Pritchard and Przeworsk 2001; Stephens et al.
2001; Freedman et al. 2004). An allele may show strong
LD with the functional variants in one population but
exhibit very weak LD in other populations (Carlson et
al. 2004) or may show strong LD with one marker but
exhibit weak LD with other nearby markers, even in the
same population. These phenomena make it difficult to
replicate genetic associations among populations and to
obtain consistent results within a genomic region in the
same population.

There are two ways to alleviate aberrant LD patterns,
improve the power of association studies, and increase
the probability of replications. One way is to construct
haplotype blocks by studying LD patterns across the
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genome and to optimally select a set of robust tagSNPs
such that all common variants are either directly ge-
notyped or in strong LD with the genotyped tagSNPs
(Goldstein 2001; Johnson et al. 2001; Stephens et al.
2001; Gabriel et al. 2002; Zhang et al. 2002, 2003a;
Ke and Cardon 2003; Xiong et al. 2003). However, it
is unclear whether the haplotype block patterns and
tagSNPs are consistent among populations or among
repeated sampling from within a population. Another
way is to develop novel statistical methods for associ-
ation studies. Currently, the two major statistical meth-
ods for association studies are to compare haplotype
frequencies between affected and unaffected individuals
(Chapman and Wijsman 1998; Akey et al. 2001), which
is often referred to as the standard x2 test, and to com-
pare haplotype similarities between affected and unaf-
fected individuals (de Vries et al. 1996; van der Meulen
and te Meerman 1997; Bourgain et al. 2000, 2001,
2002; Tzeng et al. 2003; Zhang et al. 2003b; Yu et al.
2004b). As Tzeng et al. (2003) pointed out, none of
these frequency- or sharing-based methods is uniformly
the most powerful.

The standard x2 statistic compares allele (or haplo-
type) frequencies—or linear transformations of allele
(or haplotype) frequencies—and partially considers the
variance-covariance structure of the allele or haplotype
frequencies. Therefore, the standard x2 test statistic is
not uniformly the most powerful (Tzeng et al. 2003).
Amplifying the difference in allele (or haplotype) fre-
quencies between cases and controls is key to increas-
ing the power of current test statistics for association
studies.
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One way to amplify the difference in allele (or hap-
lotype) frequencies between cases and controls is to use
nonlinear transformations of allele or haplotype fre-
quencies, and , where PA is the frequency ofAf(P ) f(P)
the allele (or haplotype) in cases and P is the frequency
in controls, and to construct new test statistics such that
the statistics based on are larger than theAf(P ) � f(P)
statistics based on the difference in allele or haplotype
frequencies, . The nonlinear transformations ofAP � P
allele or haplotype frequencies should have the feature
that the magnitude of the amplified difference in allele
or haplotype frequencies will increase as the difference
in allele or haplotype frequencies increases.

A typical nonlinear function of frequencies is Shan-
non entropy. Shannon entropy, originally defined in in-
formation theory (Shannon 1948), is used to measure
the uncertainty removed or the information gained by
performing an experiment. When it is applied to char-
acterize DNA variation, entropy measures genetic
diversity and extracts the maximal amount of infor-
mation for a set of SNP markers (Hampe et al. 2003).
Conditional entropy measures the average information
gained, given the occurrence of specific events. Entropy
of a genomic region carried by affected individuals or
unaffected individuals is conditional entropy. The dif-
ference between affected and unaffected individuals in
entropy of the SNP markers is a measure of the asso-
ciation of the markers with disease.

In this article, we first define the entropy of a set of
SNP markers at a genomic region of interest and the
partial entropy of a haplotype. We then define the con-
ditional entropy and the partial entropy of the markers
in affected individuals and describe the relationship be-
tween conditional entropy and LD. We present a novel
statistic that is based on the concept of entropy, to test
the association between SNP markers and disease, in-
cluding a test of the association of marker alleles, hap-
lotypes, multiple-marker loci, and haplotype blocks.
The relationship between the entropy-based test statistic
and the standard x2 test statistic is discussed.

Entropy and the Overall Measure of Multilocus LD

Entropy, proposed by Shannon (1948), measures the un-
certainty of random variables or the degree of nonstruc-
ture of a system (Nothnagel et al. 2003). The entropy
of a random variable X is defined as

[ ]S(X) p E � log P(X) p� P(x ) log P(x ) ,� i i
i

where denotes the probability that the random var-P(x )i
iable X assumes the value .xi

The concept of entropy can be used to study DNA
variation at a marker locus and patterns of LD. First,

we consider two marker loci, and , with twoM M1 2

alleles each. Assume locus has alleles A and a withM1

frequencies and , respectively. Locus has allelesP P MA a 2

B and b with frequencies and , respectively. TheP PB b

frequencies of haplotypes AB, Ab, aB, and ab are de-
noted by , , , and , respectively. Let d denoteP P P PAB Ab aB ab

the measure of LD between two loci and be defined as

d p P � P P .AB A B

The entropy of the marker is defined as

S p �P log P � P log P ,M A A a a1

and the entropy of the haplotypes at two marker loci
is defined as

S p �P log P � P log PM M AB AB Ab Ab1 2

�P log P � P log P .aB aB ab ab

For convenience of presentation, a component of the
entropy of the haplotypes at two marker loci is referred
to as “partial entropy” of the specific haplotype. Let
the partial entropy of haplotype AB, , be equal toSAB

. In appendix A, we show that�P log PAB AB

S ≈ �P P log (P P )AB A B A B

2d
�d(log P � log P � 1) � .A B 2P PA B

The entropy of the haplotypes at marker loci andM1

is given byM2

2d
S ≈ S � S �M M M M1 2 1 2 2P P P PA a B b

(see appendix A), where the entropies of the alleles at
marker loci and areM M S p �P log P � P log P1 2 M A A a a1

and , respectively.S p �P log P � P log PM B B b b2

Next, we consider multiple loci. Suppose that there
are K marker loci that generate m haplotypes. Let

be the population frequency of haplotypeP HH j …jj …j 1 k1 k

with a sequence of alleles , where the alleleM … Mj j1 k

at the ith locus is either allele 1 or allele 2. LetM Pj Mi ji

be the frequency of allele in the population. DefineMji

an overall measure of the haplotype LD at the K loci
as

…d p P � P P (1)j …j H M M1 k j …j j j1 k 1 k

(Xiong et al. 2003). The partial entropy of haplotype
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is defined as , and the en-H S p �P log Pj …j H H H1 k j …j j …j j …j1 k 1 k 1 k

tropy of the haplotype at K marker loci is defined as

… …S p � P log P p S .�� � � �k H H Hj …j j …j j …j1 k 1 k 1 k
j j j j j1 2 k 1 k

In appendix A, we show that the partial entropy
and the entropy of the haplotype at K marker loci,SHj …j1 k

Sk, can be approximated by

… …S ≈ �P P log (P P )H M M M Mj …j j j j j1 k 1 k 1 k

2dj …j1 k…� 1 � log P P d �( )[ ]M M j …jj j 1 k …1 k 2P PM Mj j1 k

and

k 2d1 j …j1 k…S ≈ S � ,� � �k Mi …2 P Pip1 j j1 k M Mj j1 k

where is the entropy of marker2S p �� P log PM M Mjp1i j ji i

. This shows that the entropy of the haplotype at KMi

marker loci is the approximation of the sum of the
entropies of all K marker loci and a function of the
overall measures of all haplotypes.

Entropy in Affected Individuals

If the marker allele or haplotype is in LD with the disease
locus, the frequency of the marker allele or haplotype
in affected individuals and unaffected individuals will be
different. The entropy of the haplotypes in affected in-
dividuals and unaffected individuals will also be differ-
ent, and the difference can quantify the level of LD be-
tween the marker and the disease locus.

Let be one of the m haplotypes at K marker loci.Hi

Let and be the frequency of haplotype inAP P HH H ii i

unaffected individuals and affected individuals, respec-
tively. Let and be the partial entropy of haplotypeAS SH Hi i

in unaffected individuals and affected individuals,Hi

respectively. Then, we have

A A AS p �P log P and S p �P log P .H H H H H Hi i i i i i

In appendix B, we show that can be approximatedASHi

by

2 2b dH DA iS ≈ S � bd (1 � log P ) � ,H H H D Hi i i i 2PHi

where is the overall measure of LD between hap-dH Di

lotype Hi and disease allele D.
Therefore, the difference in the partial entropy of the

haplotype between the affected and unaffected individ-
uals is given by

2 2b dH DA iDS p S � S ≈ bd (1 � log P ) � . (2)H H H H D Hi i i i i 2PHi

Clearly, the gain in information about the association
of the haplotype with disease is a function of the overall
measure of LD between the haplotype and the disease
locus. If the haplotype or marker loci are in linkage
equilibrium with the disease allele, then the difference
in the partial entropy of the haplotype ( ) betweenDSHi

affected and unaffected individuals will be zero.

The Entropy-Based Statistic for Association Tests

In this section, we present an entropy-based statistic for
case-control association studies. We begin with an in-
troduction of notation. The first partial derivatives of
the partial entropy of haplotype with respect to theHi

frequency of haplotype , denoted by , is given asH bj ij

�SHib p p �1 � log Pii Hi�PHi

and

�SHib p p 0 (i ( j) .ij
�PHj

The dimensional matrix of the first partialm # m
derivatives is denoted by , where m is theB p (b )ij m#m

number of haplotypes, as defined above. The number
of haplotypes follows a multinomial distribution,
and the variance-covariance matrix is given by ,2n SG

where is the number of unaffected individuals,nG

, , and .S p (j ) j p P (1 � P ) j p �P P (i ( j)ij m#m ii H H ij H Hi i i j

The above quantities can be similarly defined for the
affected individuals and will be denoted by the addi-
tional superscript “A” in the corresponding quantities—
that is,

A A Ab p �1 � log P , b p 0 (i ( j) ,ii H iji

and . Likewise, ,A A A A A AB p (b ) j p P (1 � P ) j pij m#m ii H H iji i

, and .A A A A�P P (i ( j) S p (j )H H ij m#mi j

Let , , ,T A A A T TS p [S … S ] S p [S … S ] W p BSBH H H H1 m 1 m

and , where is defined as in the pre-A A A A T AW p B S (B ) SHi

vious section.
Let , , , and be the estimators of S, , W,A A Aˆ ˆ ˆ ˆS S W W S
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and , respectively. The partial entropy–based statisticAW
for an association test, denoted by , is defined asTPE

�1
Aˆ ˆW WTA Aˆ ˆ ˆ ˆT p S � S � S � S ,( ) ( )PE ( )2n 2nA G

where and are the number of affected and un-n nA G

affected individuals, respectively. Because the matrix

Aˆ ˆW W
�( )2n 2nA G

may not be of full rank, the generalized inverse of the
matrix will be used in situations where the inverse of
the matrix does not exist.

We can show that, under the null hypothesis of no
association between the K marker loci and disease,
when the frequencies of the haplotypes are not zero,

is asymptotically distributed as a central dis-2T xPE (m�1)

tribution (appendix C). Because application of theorem
1.9 in Lehmann (1983, p. 344) requires that entropy
be continuously differentiable with respect to the fre-
quencies of the haplotypes, theorem 1.9 cannot be ap-
plied when the frequency of the haplotype is zero. If
the frequency of the haplotype in either cases or controls
is zero, then the haplotype needs to be grouped with
other haplotypes. For example, rare haplotypes can be
grouped with the most similar haplotype. Under the
alternative hypothesis that there is an association be-
tween the K marker loci and the disease locus, isTPE

asymptotically distributed as a noncentral distri-2x(m�1)

bution with the following noncentrality parameter:

�1
AW WA T Al p (S � S ) � (S � S ) .PE ( )2n 2nA G

By invoking the relationship between the partial en-
tropy of the haplotypes and the measure of LD discussed
in the previous section, the noncentrality parameter

can be further reduced tolPE

2 T �1l ≈ b d S d � RPE 1 0 1 PE

(see appendix C), where

P (f � f ) � P (f � f )D 11 12 d 12 22b p ,
P(A)

2 2P(A) p P f � 2P P f � P f ,D 11 D d 12 d 22

AS S
S p � ,0 2n 2nG A

T
d p d … d ,[ ]1 H D H D1 m

and other parameters are as given in appendix C.

Relationship between the Entropy-Based Statistic
and the Standard x2 Test Statistic

Entropy-based statistics have a close relationship with
the standard test statistic. To see this, we first derive2x

the standard statistic using theorem 1.9 in Lehmann2x

(1983, p. 344), which leads to an entropy-based statistic.
Let . Then, the matrixˆ ˆ ˆf (P … P ) p Pi H H H1 m i

�fiB p p I .( )�P m#mHj

The variance-covariance matrix of the haplotype fre-
quencies is given by , where(1/n )SG

… P (1 � P ) �P P �P PH H H H H H1 1 1 2 1 m

S p _ _ _ . 
…�P P �P P P (1 � P ) H H H H H Hm 1 m 2 m m

If we ignore the terms and in2�P �P P (i,j p 1, … ,m)H H Hi i j

the elements of matrix , then the variance-covarianceS

matrix is reduced toS

… P 0 0H1
…0 P 0H2S ≈ p diag(P ) .Hi_ _ 5 _ 
…0 0 P Hm

Similarly, we have for the affected indi-A AS ≈ diag(P )Hi

viduals. Let , and .T A A A TP p [P … P ] P p [P … P ]H H H H1 m 1 m

Define the test statistic T as

�1
AS SA T AT p (P � P ) � (P � P ) ,( )2n 2nG A
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Figure 1 Distribution of the test statistic TPE with the use of
two-SNP haplotypes (A) and six-SNP haplotypes (B). and in-2 2x x(3) (7)

dicate x2 distribution with 3 df and 7 df, respectively.

which can be reduced to

m A 2(P � P )H Hi iT p .� AP Pip1 H Hi i�
2n 2nG A

If we assume that the numbers of affected and unaffected
individuals are equal (i.e., that ), then then p n p nA G

test statistic T can be further reduced to2x

m A 2(P � P )H Hi iT p 2n ,� AP � Pip1 H Hi i

which is exactly the formula of the standard test sta-2x

tistic (Chapman and Wijsman 1998).
Applying theorem 1.9 (Lehman 1983, p. 344) with

the function form will yieldˆ ˆf (P … P ) p �P log Pi H H H H1 m i i

the test statistic TPE. Therefore, the difference between
the standard test statistic and the entropy-based sta-2x

tistic is that the test statistic uses a linear function2x

of haplotype frequencies, whereas the entropy-based
test statistic uses a nonlinear function of haplotype fre-
quencies. The difference between these two test statistics
lies in the different mathematical forms of the haplotype
frequencies when theorem 1.9 is used to construct the
statistics.

In appendix C, we show that the noncentrality pa-
rameter of the standard test statistic is given by2l xT

. This is the first term in the noncen-2 T �1l p b d S dT 1 0 1

trality parameter of the test statistic based on partiallPE

entropy of the haplotypes.

Results

Distribution of the Entropy-Based Statistic

In the previous sections, we have shown that when
the sample size is large enough to apply large-sample
theory, the distribution of the entropy-based statistic un-
der the null hypothesis of no association is asymptoti-
cally a central distribution. To examine the validity2x

of this statement, we performed a series of simulation
studies. The computer program SNaP (Nothnagel 2002)
was used to generate haplotypes of the sample individ-
uals. Two data sets with a single haplotype block each
were simulated. The first data set has two marker loci
that generated four haplotypes with frequencies 0.2952,
0.2562, 0.1957, and 0.2529. The second data set has
six marker loci that generated eight haplotypes with
frequencies 0.1820, 0.1461, 0.1406, 0.1291, 0.1211,
0.1107, 0.0817, and 0.0887. For each data set, 20,000
individuals who were divided into equal groups of cases
and controls were generated in the general population.

To examine whether the asymptotic results of the en-

tropy-based test statistic still hold for a small sample size
under the null hypothesis of no association, 200 indi-
viduals each were randomly sampled from the cases and
controls. A total of 10,000 simulations were performed.
In each simulation, the entropy-based test statistic TPE

was calculated. Figure 1A and 1B plot the histograms
of the test statistic with the use of two-SNP haplo-TPE

types and six-SNP haplotypes, respectively. It can be seen
that the distributions of are similar to the theoreticalTPE

central distributions, even under the scenario of a2x

smaller sample size. Table 1 summarizes the type I error
rates of the test statistic for sample sizes from 100TPE

to 500 individuals with the use of two-SNP and six-SNP
haplotypes. Table 1 shows that the estimated type I error
rates of the entropy-based test statistic were not ap-
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Table 1

Estimated Type I Error Rates of the Test Statistic TPE for 10,000
Simulations

SAMPLE

SIZE

ESTIMATED TYPE I ERROR RATE FOR

Two-SNP Haplotypes Six-SNP Haplotypes

a p .05 a p .01 a p .001 a p .05 a p .01 a p .001

100 .0460 .0078 .0006 .0542 .0112 .0008
200 .0480 .0088 .0012 .0488 .0106 .0010
300 .0460 .0103 .0011 .0512 .0092 .0014
400 .0478 .0100 .0008 .0542 .0102 .0008
500 .0478 .0084 .0008 .0488 .0098 .0012

preciably different from the nominal levels ,a p 0.05
, and .a p 0.01 a p 0.001

Power of the Entropy-Based Test Statistic and the
Standard x2 Test Statistic

The power of an association test statistic depends on
a number of parameters, such as the measure of LD
between haplotypes and disease alleles, the sample size,
and the model of disease inheritance. We compared the
power of the entropy-based test statistic with that of the
standard test statistic. The markers are assumed to2x

be biallelic (i.e., SNPs). Specifically, we considered two
marker loci and a disease locus that is located in the
middle of two markers. We considered three disease
models: recessive, dominant, and genotype relative-risk
models, in which the genotype relative risk for genotypes
Dd and DD is r and times greater, respectively, than2r
that of the genotype dd (Risch and Merikangas 1996).

Exact analytical methods were used for calculation of
power. The average haplotype frequencies in the affected
and unaffected individuals were calculated by equations
(1) and (4) from Akey et al. (2001). The power of the
entropy-based statistic and the standard statistic2x

(Chapman and Wijsman 1998) ( ), with thea p 0.001
use of four haplotypes generated by two marker loci as
a function of the genetic distance between the disease
locus and its flanking marker loci for recessive, domi-
nant, and genotype relative-risk models are shown in
figure 2A, 2B, and 2C, respectively. The data demon-
strate that the power of the entropy-based statistic for
all three disease models is higher than the power of the
standard statistic. In appendix C, we show that the2x

noncentrality parameter of the entropy-based statistic is
approximately equal to the summation of the noncen-
trality parameter of the standard test statistic and2x

. But, is not always positive, and the entropy-R RPE PE

based statistic does not monotonically increase with in-
creasing allele-frequency differences, which implies that
the entropy-based statistic is not uniformly more pow-
erful than the standard test. In fact, when the dif-2x

ference in allele frequencies is very large (i.e., when

), the test is more powerful than theA 2FP � PF 1 0.7 x

entropy-based statistic proposed here.

Application to Real-Data Examples

To evaluate its performance, we applied the entropy-
based test to two real data sets. The first example is a
test of association between the catechol-O-methyltrans-
ferase (COMT) gene and schizophrenia (Shifman et al.
2002). The COMT gene plays an important biochemical
function in the metabolism of catecholamine neurotrans-
mitters and is being increasingly recognized as a con-
tributor to velocardiofacial syndrome, which is associ-
ated with a high rate of psychosis (Shifman et al. 2002).
The data were from a large case-control study of schizo-
phrenia in the Ashkenazi Jewish population. Three SNPs
within the COMT gene were typed. In table 2, we pre-
sent the P values of the entropy-based statistic for testing
the association of two-SNP haplotypes (generated from
two SNP markers) and three-SNP haplotypes (generated
from three SNP markers) with schizophrenia. For com-
parison, table 2 also includes the results of Shifman et
al. (2002) that were obtained by the usual test. It2x

is evident that P values of the entropy-based test are
smaller than those of the test.2x

The second example studied the association between
functional haplotypes in the promoter of the matrix me-
talloproteinase-2 (MMP-2) gene and esophageal squa-
mous cell carcinoma in the Chinese Han population (Yu
et al. 2004a). Two SNPs (�1306C/T and �735C/T) in
the MMP-2 gene were typed in 527 patients with esoph-
ageal cancer and 777 controls. Frequencies of two-SNP
haplotypes and P values obtained by the entropy-based
test and standard test are given in table 3. Again, the2x

entropy-based test obtained a smaller P value compared
with that obtained by the standard test.2x

Discussion

Completion of the International HapMap Project will
provide a powerful tool for identifying genes that con-
tribute to complex disease (Collins 2004). To efficiently
use DNA variants for genetic studies of complex dis-
eases, the field of human genetics needs to accomplish
two tasks: choose suitable marker sets and develop ro-
bust methods of statistical analysis (Wall and Pritchard
2003). The purpose of this report is to present an an-
alytical method of assessing the relationship between
DNA variation and disease in case-control association
studies.

The standard statistic is based on a linear function2x

of haplotype or allele frequencies. Its drawback is a
decrease in power as the number of degrees of freedom
increases, which arises as a consequence of using a dense
set of SNPs. There are two ways to increase the power



Figure 2 A, Power of the entropy-based test statistic and the standard test statistic with a significance level of , as a function2x a p 0.001
of the genetic distance between the marker and disease loci, for a recessive disease (A) and a dominant disease (B) under the assumption that

, generations, the frequencies of the minor alleles at both of the marker loci are equal to 0.1, and . C, Power of theN p 100 t p 100 P p 0.1D

entropy-based test statistic and the standard test statistic with a significance level of for a disease with genotype relative risk2x a p 0.001
, as a function of the genetic distance between the marker and disease loci, under the assumption that , generations,r p 4 N p 200 t p 100

the frequencies of the minor alleles at the first and second marker loci are equal to 0.4 and 0.1, respectively, and .P p 0.2D
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Table 2

Tests of Association between COMT Haplotypes and Schizophrenia

HAPLOTYPE SIZE

AND MARKERS

P VALUE FOR 2x P VALUE FOR ENTROPY

Males Females All Males Females All

Two-SNP haplotype
rs737865, rs165599 .0093 .0014 .00014 .00012 1.5 # 10�6 1.9 # 10�9

rs737865, rs165688 .017 .046 .0057 .00018 .012 2.7 # 10�6

rs165599, rs165688 .096 .0012 .0011 .0035 2.7 # 10�5 2.9 # 10�6

Three-SNP haplotype
rs165688, rs737865, rs165599 .0084 .0069 .00045 8.4 # 10�9 5.7 # 10�6 1.5 # 10�12

Table 3

Tests of Association between MMP-2
Haplotypes and Esophageal Cancer

HAPLOTYPE
Frequency
in Cases

Frequency
in Controls�1306 �735

T T .0057 .0335
T C .1120 .1313
C T .2116 .2181
C C .6708 .6171

NOTE.—Overall P value is 7.03 # 10�6 for
the statistic and 3.24 # 10�8 for the en-2x

tropy-based statistic.

of an association test statistic. One is to find appropriate
mathematical forms of the haplotype or allele frequen-
cies that can be used to develop test statistics with higher
power. Another is to reduce the degrees of freedom.
Most publications in this field have focused on reducing
the degrees of freedom. This report focuses on devel-
oping new entropy-based statistics to amplify the dif-
ference in allele or haplotype frequencies to increase
power.

At its most fundamental level, the case-control study
design provides a forum to compare allele frequencies
or the transformation of allele frequencies between
groups. Although the usual test statistic is a quadratic2x

function of the difference in allele frequencies, the dif-
ference represents a linear function of allele frequencies.
There are two ways to amplify the difference in allele
frequencies. One way is to make a nonlinear transfor-
mation of allele frequencies. Another way is to make a
nonlinear transformation of the difference in allele fre-
quencies between cases and controls. Although the sec-
ond way can amplify the difference between allele fre-
quencies, under the null hypothesis of zero difference,
the entropy of the difference between allele frequencies
is no longer differentiable at zero. Therefore, asymptotic
theory of the nonlinear transformation of normal ran-
dom variables cannot be applied to such statistics. The
entropy-based statistic compares the difference in values
of a nonlinear function of allele frequencies between
cases and controls, in the hope that the difference will

be larger than that of a linear function of allele fre-
quencies between cases and controls.

Entropy measures the information contained in a sto-
chastic process and can be used to measure haplotype
diversity. In this report, we show that differences in the
entropy of haplotypes between affected and unaffected
individuals quantify the overall level of LD between the
marker, haplotypes, and the disease locus. We note that
the entropy of the observed haplotypes is a nonlinear
function of haplotype frequencies. The entropy of hap-
lotypes at K marker loci quantifies the information of
all haplotypes generated at the K marker loci. The cal-
culated entropy of the haplotypes depends on the choice
of mathematical functions of the haplotype frequencies.
We introduced the concept of partial entropy of a hap-
lotype. If we compare the difference between affected
and unaffected individuals in the partial entropy of a
haplotype, we can test the association of that particular
haplotype with disease. We can also test the association
of a set of haplotypes or multiple marker loci by com-
paring differences in the partial entropy of the set be-
tween affected and unaffected individuals.

To use an entropy-based statistic to test the associ-
ation of haplotypes with disease, we first need to study
the distribution of the test statistic under the null
hypothesis of no association. By simulation, we show
that the distribution of the entropy-based test statis-
tic is close to a distribution, even for small sample2x

sizes. To validate the test statistic and to estimate the
false-positive rate, we calculated the type I error rates
of the entropy-based statistic by simulation. The results
showed that the type I error rates were close to the
nominal significance levels, which implies that the
test for association is valid for a single homogeneous
population.

An important property of a test statistic for genetic
association studies is power. We show, by analytical
methods, that the power of the entropy-based statistic
is higher than the power of the standard statistic in2x

most cases. The power gap between these two test sta-
tistics increases as the number of haplotypes increases
(data not shown). However, the entropy-based statis-
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tic is not more powerful in all situations. When the
difference in allele frequencies is very large, that is,

, the statistic is more powerful thanA 2FP � PF 1 0.7 x

the entropy-based statistic. However, such differences
in allele frequencies between cases and controls are
practically unheard of in real-world studies of common
human diseases. The entropy-based statistic was applied
to real data to test the association between COMT hap-
lotypes and schizophrenia and the association between
the MMP-2 gene and esophageal squamous cell carci-
noma. The results of real-data analyses demonstrated
that, for case-control studies, P values of the entropy-
based statistic are smaller than those of the standard

test.2x

Asymptotical theory for nonlinear transformation of
normal variables requires that entropy be continuously
differentiable with respect to the frequencies of the
haplotype. When the frequency of the haplotype in ei-
ther cases or controls is zero, entropy is no longer
continuously differentiable. In this case, the haplotype
needs to be grouped with other haplotypes. However,
such grouping may result in loss of statistical power,
depending on the haplotype effects of the grouped
haplotypes.

The entropy of a haplotype is a nonlinear function
of haplotype frequencies. Other mathematical functions
of haplotype frequencies should be investigated for de-
signing novel test statistics in the future. This will open
new ways of developing more powerful statistics for
tests of association. The completion of the International
HapMap Project and advances in genotyping technol-
ogies bode well for large-scale whole-genome associa-
tion studies. Development of robust methods for relat-
ing considerable genomic information to risk of disease
is urgently needed.
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Appendix A

First, we consider the partial entropy of a haplotype at two marker loci. By definition, the partial entropy of
haplotype AB is

S p �P log P . (A1)AB AB AB

But,

P p P P � d . (A2)AB A B

Substituting from equation (A2) into equation (A1) yieldsPAB

S p �(P P � d) log (P P � d) ,AB A B A B

which can be simplified to

d
S p �(P P � d) log (P P ) � (P P � d) log 1 �AB A B A B A B ( )P PA B

2d d≈ �P P (log P � log P ) � d(log P � log P ) � (P P � d) �A B A B A B A B 2 2( )P P 2P PA B A B

2x
by log (1 � x) ≈ x �[ ]2

2d≈ �P P (log P � log P ) � d(log P � log P � 1) � .A B A B A B 2P PA B
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The above formula is derived by Taylor expansion of the logarithm function. The assumption for Taylor expansion
of the logarithm function is that the argument x should be small. When the frequencies of alleles are small,

may be large. This will violate the assumption of the Taylor expansion and makes approximation inaccurate.d/P PA B

Similarly, we have

2d
S ≈�P P(log P � log P) � d(log P � log P � 1) � ,Ab A b A b A b 2P PA b

2d
S ≈�P P (log P � log P ) � d(log P � log P � 1) � , andaB a B a B a B 2P Pa B

2d
S ≈�P P(log P � log P) � d(log P � log P � 1) � .ab a b a b a b 2P Pa b

The entropy of the haplotypes at marker loci and is equal toM M1 2

2d 1 1 1 1
S ≈ �P log P � P log P � P log P � P log P � � � �M M A A a a B B b b1 2 ( )2 P P P P P P P PA B A b a B a b

2d
p S �S � ,M M1 2 2P P P PA a B b

where and are the entropies of marker loci and , respectively.S S M MM M 1 21 2

Next, we consider the partial entropy of a haplotype at multiple marker loci. By definition, partial entropy of
haplotype is defined asHj …j1 k

S p �P log P .H H Hj …j j …j j …j1 k 1 k 1 k

But, from equation (1), we have

… …S p �(P P � d ) log (P P � d )H M M j …j M M j …jj …j j j 1 k j j 1 k1 k 1 k 1 k

dj …j1 k… … …p �(P P � d ) log (P P ) � (P P � d ) log 1 �M M j …j M M M M j …jj j 1 k j j j j 1 k ( )…1 k 1 k 1 k P PM Mj j1 k

2dj …j1 k… … …[ ]≈ �P P log (P P ) � d log (P P ) � 1 � .M M M M j …j M Mj j j j 1 k j j …1 k 1 k 1 k 2P PM Mj j1 k

Summarizing over all possible yieldsS j … jH 1 kj …j1 k

K 21 dj …j1 k…S ≈ S �� � �K Mi …2 P Pip1 j j1 k M Mj j1 k

(note that ), where is the entropy of marker .
2

…� � d p 0 S p � � P log P Mj …j M M M i1 k i j ji ij j jp11 k

Appendix B

By definition,

P(H ,A)iA A A AS p �P log P , where P p . (B1)H H H Hi i i i P(A)

If we assume Hardy-Weinberg equilibrium, then the prevalence of disease , where2 2P(A) p P f � 2P P f � P fD 11 D d 12 d 22
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and denote the frequencies of alleles D and d at disease locus, respectively, and , , and are the penetrancesP P f f fD d 11 12 22

of genotype DD, Dd, and dd, respectively.
By theorem of total probability (Ross 1997),

P(H ,A) p P(H ,DD,A) � P(H ,Dd,A) � P(H ,dd,A)i i i i

p P P f � (P P � P P )f � P P f .H D D 11 H D d H d D 12 H d d 22i i i i

Therefore,

AP p a P � a P , (B2)H 1 H D 2 H di i i

where

P f � P f P f � P fD 11 d 12 D 12 d 22a p and a p .1 2P(A) P(A)

Note that

P p P P � d and P p P P � d (B3)H D H D H D H d H d H di i i i i i

(Xiong et al. 2003), where and are the overall measure of LD between haplotype and disease allele Dd d HH D H d ii i

and between haplotype Hi and allele d, respectively. Substituting and from equation (B3) into equationP PH D H di i

(B2) leads to

AP p a (P P � d ) � a (P P � d )H 1 H D H D 2 H d H di i i i i

p P (a P � a P) � a d � a d . (B4)H 1 D 2 d 1 H D 2 H di i i

Since and , the above equation (B4) is simplified toa P � a P p 1 d p �d1 D 2 d H d H Di i

AP p P � (a � a )d p P � bd , (B5)H H 1 2 H D H H Di i i i i

where . Substituting from equation (B5) into equation (B1) yieldsAb p a � a P1 2 Hi

A AS p S p �(P � bd ) log (P � bd )H H H D H H Di i i i i

bdH Dip �(P � bd ) log P 1 �H H D Hi i i( )[ ]PHi

bdH Dip �(P � bd ) log P � (P � bd ) log 1 �H H D H H H Di i i i i ( )PHi

2 2bd b dH D H Di i≈ �P log P � bd log P � (P � bd ) �H H H D H H H D 2i i i i i i ( )P 2PH Hi i

2 2b dH Dip �P log P � bd (1 � log P ) �H H H D Hi i i i 2PHi

2 2b dH Dip S � bd (1 � log P ) � .H H D Hi i i 2PHi
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Appendix C

Recall that

A A AT T[ ] [ ]S p S … S and S p S … S .H H H H1 m 1 m

From equation (2), we have

AS � S ≈ U , (C1)

where and . Next, we calculate the Jacobian matrix . ByT 2 2 AU p [U … U ] U p b(log P � 1)d � b d /2P B1 m i H H D H D Hi i i i

definition,

A�SHA ib pii A�PHi

Ap �1 � log PHi

p �1 � log (P � bd )H H Di i

bdH Di≈ �1 � log P � [by log (1 � x) ≈ x]Hi PHi

bdH Dip b � ,ii PHi

where . Let and . Then, we haveb p �1 � log P G p �bd /P G p diag (G … G )ii H i H D H 1 mi i i

AB ≈ B � G . (C2)

Next, we study the relationship between covariance matrix in the affected individuals and covariance matrixAS

in the unaffected individuals. Note thatS

A AP (1 � P ) p (P � bd )(1 � P � bd ) ≈ P (1 � P ) � b(1 � 2P )dH H H H D H H D H H H H Di i i i i i i i i i

and

A A�P P p �(P � bd )(P � bd ) ≈ �P P � b(P d � P d ) .H H H H D H H D H H H H D H H Di j i i j j i j i j j i

Thus, we have , whereAS ≈ S � bD

… (1 � 2P )d �(P d � P d ) �(P d � P d )H H D H H D H H D H H D H H D1 1 1 2 2 1 1 m m 1
…D p _ _ _ . 
…�(P d �P d ) �(P d � P d ) (1 � 2P )d H H D H H D H H D H H D H H Dm 1 1 m m 2 2 m m m

Now we are ready to calculate the quantity . With the definition of and equation (C2), we have
AW W A� W2n 2nG A

A A A A T A T A TW p B S (B ) ≈ (B � G)S (B � G) p BS B � R ,
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where . Thus,A T A T A TR p BS G � GS B � GS G

AW W 1 1 1T A T� ≈ BSB � BS B � R
2n 2n 2n 2n 2nG A G A A

AS S 1Tp B � B � R( )2n 2n 2nG A A

1
p W � R ,0 2nA

where and . But,
AS S TS p � W p BS B0 0 02n 2nG A

�1

1
�1 �1 �1 �1 �1 �1W � R p W � W (W � 2n R ) W0 0 0 0 A 0( )2nA

(Anderson 1984). Then, the noncentrality parameter lPE can be expressed as

A T �1 �1 �1 �1 �1 �1 Al ≈ (S � S ) [W � W (W � 2n R ) W ](S � S ) . (C3)PE 0 0 0 A 0

Substituting from equation (C1) into the above equation (C3) yieldsAS � S ≈ U

T �1 �1 �1 �1 �1 �1l ≈ U [W � W (W � 2n R ) W ]UPE 0 0 0 A 0

T �1 T �1 �1 �1 �1 �1p U W U � U W (W � 2n R ) W U . (C4)0 0 0 A 0

But,

T �1 T �1 T �1 �1U W U p U (B ) S B U0 0

�1 T �1 �1p (B U) S B U0

2 T �1 2p (bd � b d ) S (bd � b d ) , (C5)1 2 0 1 2

where andTd p [d … d ]1 H D H D1 m

T

2 2d dH D H D1 m…d p .2 [ ]2(1 � log P )P 2(1 � log P )PH H H H1 1 m m

Substituting equation (C5) into equation (C4) yields , where2 T �1l ≈ b d S d � RPE 1 0 1 PE

3 T �1 4 T �1 2 T �1 �1 �1 �1 �1 �1 �1 2R p 2b d S d � b d S d � (bd � b d ) S B (W � 2n R ) B S (bd � b d ) .PE 1 0 2 2 0 2 1 2 0 0 A 0 1 2

Then, we derive the noncentrality parameter of the standard test statistic T. From equation (C5), we know2l xT

�1
AS SA T A A T �1 Al p (P � P ) � (P � P ) p (P � P ) S (P � P ) .T 0( )2n 2nG A

But, from equation (B5), we have . Therefore, .A 2 T �1P � P p bd l p b d S d1 T 1 0 1
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